

CIÊNCIA NAS FARÓFIAS

Protocolo experimental

3.º, 4.º, 6.º e 8.º anos

Estudo do Meio | Ciências Naturais | Físico-Química

As farófias são um clássico da doçaria portuguesa que combina a leveza das claras de ovos cozidas com a textura aveludada do creme que as adoça. Estas deliciosas "nuvens" doces encerram, no entanto, muita ciência!

Quando sujeitas a aquecimento, as proteínas do ovo passam por processos de desnaturação e reassociação (gelificação), dando origem a alterações de textura, usualmente exploradas na culinária.

Com este saboroso protocolo experimental explora-se a alteração da estrutura das proteínas da clara do ovo.

Conhecimentos pré-requeridos	 Saber que a clara do ovo é constituída maioritariamente por água Compreender que as modificações de textura que ocorrem com a clara e a gema do ovo, durante o seu processamento e confeção, de devem a alterações estruturais das proteínas que as constituem Compreender que ocorrem reações químicas nos alimentos durante os procedimentos culinários
Resultados da aprendizagem	 As claras em castelo são um exemplo de mistura coloidal A ação mecânica e o aquecimento das proteínas do ovo sofrem processos de desnaturação e reassociação (gelificação), alterando a sua textura
Enquadramento curricular	 Discutir a importância da ciência e da tecnologia na evolução dos produtos alimentares Interpretar, em situações laboratoriais e do dia a dia, fatores que influenciam a velocidade das reações químicas
Materiais	 75 g açúcar 3 ovos 1 L leite 1 vagem de baunilha Vara de arames/garfo Escumadeira Taça Tacho Fogão

ENQUADRAMENTO TEÓRICO

A formação das claras em castelo corresponde à formação de uma espuma, ou seja, de uma dispersão de bolhas de ar, neste caso de pequenas dimensões, no seio de um líquido. As claras em castelo – tal como as natas batidas ou a espuma da cerveja – são dispersões coloidais, ou seja, misturas que apresentam o aspeto de uma solução homogénea, mas que, na verdade, são misturas heterogéneas.

A clara do ovo é composta maioritariamente por água (87.8% água, 10.5% proteína, 1.0% açúcares e 0.6% minerais), no entanto, é devido às características das proteínas que a constituem que é possível "montá-las em castelo". Através do aumento da temperatura ou por ação mecânica (bater as claras em castelo), as suas proteínas têm a capacidade de diminuir a tensão superficial e de se posicionar na superfície de separação entre a fase gasosa (ar) e a fase líquida (clara do ovo), facilitando, desta forma, a formação das bolhas gasosas e impedindo, posteriormente, a sua rutura (aumento da estabilidade). Durante este processo, as proteínas sofrem alteração na sua conformação – esticando-se – formando uma película viscoelástica resistente à superfície de cada bolha de ar.

QUESTIONAR

- Por que se consegue obter uma dispersão coloidal (claras em castelo) a partir da clara do ovo e não se consegue ao bater água, sumo de fruta ou gema do ovo?
- Por que temos de separar as gemas das claras?

EXPLORAR

- 1. Bater as claras em castelo;
- 2. Quando estiverem firmes, juntar o açúcar;
- 3. Levar o leite ao lume com a baunilha;
- 4. Colocar no leite colheradas de claras em castelo;
- 5. Deixar cozer, ao mesmo tempo que se viram com um garfo;
- 6. Quando as farófias estiverem firmes retirar com a escumadeira e deixar escorrer.

EXPLICAR

Quando sujeitas a aquecimento, as proteínas sofrem desnaturação e processos de reassociação (gelificação), dando origem a alterações de textura, tal como acontece quando as claras são batidas em castelo ou aquecidas, originando as farófias.

A desnaturação das proteínas é acompanhada pela rutura das ligações responsáveis pela sua conformação – frequentemente enovelada (globular) – levando a alterações desta conformação e à possibilidade de estabelecimento de novas ligações.

Este processo pode ser conseguido por aquecimento (cozedura), variações de pH (por exemplo, acidificação com sumo de limão ou vinagre) ou ação mecânica (agitação/batimento).

A realização desta atividade experimental implica alguns cuidados:

- Cuidado! Não deixar cair gema de ovo nas claras. A gema do ovo é muito rica numa classe de lípidos (denominados fosfolípidos), os quais, à semelhança das proteínas, também gostam de se localizar na superfície de separação das duas fases (líquida e gasosa, neste caso). Assim, competem com as proteínas da clara para esta localização, dificultando a formação das claras em castelo (mistura coloidal) e diminuindo a sua estabilidade.
- Adicionar o açúcar apenas depois de bater as claras. Para além de adoçar, a adição de açúcar traduz-se num aumento da viscosidade da fase líquida, aumentando a estabilidade das misturas coloidais. Adicionado antes de bater as claras, provoca uma estabilização das proteínas, dificultando a ocorrência de alterações conformacionais, fundamentais para a formação das claras em castelo.

Para obter mais informações sobre as alterações químicas que ocorrem com o processamento e confecção dos alimentos, aconselhamos a consulta do seguinte recurso educativo:

Aprender ciência de uma forma divertida e saborosa

https://academia.cienciaviva.pt/recursos/recurso.php?id_recurso=11

Procedimento experimental adaptado do protocolo desenvolvido pelo Grupo de Bioquímica Alimentar – QOPNA (Química Orgânica, Produtos Naturais e Agroalimentares), da Universidade de Aveiro.

